Growing High Quality Corn Silage

Manni Singh

Cropping Systems Agronomist

agronomy.msu.edu

msingh@msu.edu, 517-353-0226

Jan 15, 2021, Northern MI Virtual Extension Meeting

VEATHER 4 I CORN GRAIN 7 I CORN SILAGE 27 I SILAGE MYCOTOXINS 29 I CORN DISEASES

 MICHIGAN STATE
 College of Agriculture and Natural Resources

 RESEARCH CONCEED BY MICHIGAN STATE UNIVERSITY Results of the 2020 Growing Season

Extension

MICHIGAN STATE

Desirable Corn Silage Characteristics

- > What makes a good corn silage?
 - High yield
 - > High energy (high digestibility)
 - > High intake potential (low fiber)
 - > High protein
 - Proper moisture at harvest for storage

Both hybrid selection and management are critical for high quality silage production

Corn Silage Hybrid Selection

Hybrid performance data

- > Trustworthy data, replicated, over locations and/or years
- Consistent top performance in your region (reduces risk)

Evaluate both yield and quality

- Yield (on % DM basis)
- > NDF: Low NDF increases silage digestibility and intake
- NDF digestibility (NDFD): increase DM intake and milk production
- > High Crude protein, Starch content
- > Overall Silage quality (Milk/ton is a good indicator)
- Milk/Acre (DM yield x Milk/ton)
- Goal: Identify hybrids with high yield & milk/ton

Importance of Hybrid Selection

Michigan Corn Trials Zone 4 (2018, 2019)

Importance of Hybrid Selection

<u>Dry tonnage</u>: 25% diff b/w best and worst hybrid
 <u>Milk per Acre</u>: 11% diff b/w best and worst hybrid
 <u>Milk per Ton</u>: 30% diff b/w best and worst hybrid

- Assume 5,000 ton corn silage feed requirement
- 42 acres x 150 bu/A = 6,300 bu (to sell or feed)
 6,300 bu x \$3.50/bu = \$22,050

	Silage yield (T/A @65%)	Acres required		
Hybrid A	30	167		
Hybrid B	24	208		
Difference	6	42		
Diff. (%)	25%			

Corn Maturity Selection- GDD maps

Seasonal GDD totals are increasing with time, use GDD rating vs "relative maturity"?

> ~5-8 units longer 'relative maturity' than grain hybrids

Relationships with Relative Maturity

Data from Zone 4 (3 locations)- One planting time: mid-season

Silage Dry Yield of Hybrids with Transgenic Traits

Includes herbicide tolerance

	All entries	Conv. Only	Herbicide tolerance only	Above ground insect protection	Above and below ground insect protection	
Av. Yield (t DM/A)	9.7	9.5	9.5	9.8	9.7	
Range (t DM/A)	8.3-10.9	8.9-10.6	8.3-10.5	9.0-10.7	8.6-10.9	
No. of hybrids	165.0	13 (8%)	9 (5%)	67 (41%)	76 (46%)	
3-yr Av. Yield	9.1	8.8	8.8	9.1	9.2	

What if Mycotoxins (VOM) are an issue?

Pest pressure is mostly absent in these trials

Corn Silage Hybrid Types

	DM Yield		Quality	Milk Yield			
Hybrid type	(tons/ac)	Starch	СР	NDF	NDFD	(lb/ton)	(lb/ac)
Dual Purpose Avg:	9.9 a	34 a	8.4 b	40 b	58 b	3370 b	33,400 a
DeKalb DKD61-69							
DeKalb DKC63-42							
Pioneer 33T55							
Pioneer 34A89							
Brown Midrib Avg:	9.2 b	32 b	8.6 a	42 a	73 a	3650 a	33,600 a
Mycogen F2F566							
Mycogen F2F610							
Difference:	-7%	-6%	+2%	+5%	+26%	+8%	+0%
Notes on BMR:	-20% in 1990s				Similar in 1990s		

BMR hybrid Dual hybrid

Data from Cox & Cherney, 2011 (Agronomy Journal)

Corn Silage Hybrid Types- Dry matter

Highest yield in Dual hybrid, similar to HiDF and Leafy hybrid
 BMR hybrids had lower yield than Dual in 3 out of 4 site years
 Similar response to seeding rates among hybrid classes

Corn Silage Hybrid Types- Quality

Lower NDFD in Dual hybrid compared to BMR

BMR hybrid had highest NDFD

Corn Silage Hybrid Types- Milk yields

Early: May 7

Mid: May 22 Late: June 7

Hybrid: 109 RM

Planting Date

- Early Planting resulted in higher silage/grain yield and quality
- Yield and quality declines with delayed planting

🐔 MICHIGAN STATE UNIVERSITY

Planting Date

Early: May 7 Mid: May 22 Late: June 7 Hybrid: 109 RM

Seeding Rates

Joe Lauer, 2018

Seeding Rates

- Trials in 2018-2019 showed minimal differences in seeding rate responses between hybrid types (NO hybrid x seed rate interaction)
- > Optimal seed rate ≥36k/ac, ~3,000 more than corn grain
- Some benefit of narrow rows in northern Corn Belt

Harvest at Peak Quality

Source: Joe Lauer, UW (2019)

🖌 MICHIGAN STATE UNIVERSITY

Optimal Harvest Considerations

- Allow dry down to <u>65-70% whole-plant moisture</u> (60-65% in upright silos)
- Poor relationship between kernel milk-line stage and whole-plant %DM
- Use kernel milk-line as trigger to begin sampling for whole-plant %DM
- Begin around full-dent stage (~35 d after silking; half milk-line is ~45 d after silking)
- ~0.5% per day dry-down on a whole-plant basis
- Kernel processing is important

Mycotoxins in Corn Silage

Gibberella Ear and Stalk Rot DON (VOM), ZON

Fusarium Ear and Stalk Rot Fumonisin

Source: Damon Smith, UW

Grad student: H. Kaur

Mycotoxin Dietary Limits

Potentially Harmful Toxin Levels for a Total Diet (DM)									
	Dairy	Feedlot	Swine	Poultry	Equine				
Toxin Type	Values listed in blue are PPM, all other listed are in PPB								
Aflatoxin	20 20 20 20 20								
Deoxynivalenol (DON or Vomitoxin)*	0.5 to 1.0	10	1	2	500				
Fumonisin	2	7	10	20	500				
T-2 Toxin	100	500	100	100	NA				
Zearalenone	400	5	300	10	50				
Ochratoxin	5	5	700	700	35				
Ergot Toxins (combined)	500	500	500	750	300				

Total Diet DON Level = Feedstuff DON Level X (Feedstuff (lbs. DM) / Total Diet (lbs. DM)

e.g. Total Diet DON 2.5 ppm = 5.0 ppm (Corn Silage DON level) X (25 lbs. DM Corn Silage / 50 lbs. DM Total Diet)

Mycotoxins in Michigan Fields- 2019 data

- 34 samples tested for 24 toxins, > 1 mycotoxin in all, most samples had multiple toxins
- DON and ZON were reported in all samples (cooccurrence was common)
- Low levels overall for most toxins but DON was >1ppm in ~50% samples)
- Environment was not conductive to fungal growth and toxin accumulation in 2019 and 2020

Mycotoxin	DON	D3G	15-ADON	CUL	ZON	HT2	FB1	FB2	FB3	BEAU
Positive samples	34	27	21	33	34	8	33	28	19	34
Percent positives	100	79	62	97	100	24	97	82	56	100
Highest levels (ppm)	5.34	0.76	1.59	0.54	2.69	0.59	2.76	0.69	0.67	0.54

MICHIGAN STATE UNIVERSITY

Hybrid Selection and Insect Protection Traits

ECB- European Corn Borer; WBC- Western Bean Cutworm Average of 2 hybrids/category, 5% RIB (refuge in bag) for Bt hybrids

Hybrid Selection and Insect Protection Traits

🐔 **MICHIGAN STATE** UNIVERSITY

Hybrid Selection and Insect Protection Traits

DON (ppm)

Ingham 2019 (Inoculated Study)

Fungicide Application

- No benefit of fungicide application in 2019
- > 2020 showed reduction in ear rot levels at 2 locations, DON results are pending
- Other research has shown reduction in foliar and stalk rots, improved quality

Integrated Mycotoxin Management

- Hybrid selection
- Residue management
 - Crop rotation
 - Tillage
- Reduce plant stress
- Manage for uniformity
- Insect control (Bt traits, scout and spray)
- Fungicide application (timing, chemistry)
- Harvest high risk fields first
- Diet: dilute, add adsorbents?

Summary

> Hybrid selection considerations:

- > High silage yield and quality
- > Relative maturity (match local GDD)
- Trait package- based on pest pressure
- Dual vs silage type hybrids?
- > Agronomic traits- disease/drought tolerance

>Key management decisions:

- Early planting
- > Optimum seeding rate (\geq 36,000 seeds/ac)
- Harvest at peak quality
- Fungicide/insecticide application?
- > Mycotoxin management

Low Tonnage

Low Tonnage

Low Quality

- Harkirat Kaur
- Bill Widdicombe
- Tom Siler
- Katlin Fusilier
- Kalvin Canfield
- Maddi Yaek
- Garrett Zuver
- Mike Particka
- Paul Horny
- Charles Scovill (Syngenta)
- Undergrad students
- Farmer cooperators
- Dr. Chris Difonzo
- > Dr. Marty Chilvers
- Dr. Erin Burns

Phil Kaatz

Phil Durst

Brook Wilke

Martin Mangual

Farmer cooperators

Thanks!

517-353-0226

agronomy.msu.edu

MICHIGAN STATE

Seed companies